October 22, 2021

Bazar Lead

Just Law & Legal

Darcy’s law predicts widespread forest mortality under climate warming

  • 1

    Van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 2

    Peng, S. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forest. Nature Clim. Change 1, 467–471 (2011).

    Article 

    Google Scholar
     

  • 3

    Settele, J. et al. in Climate Change 2014: Impacts, Adaptation and Vulnerability (eds Field, C. et al.) Ch. 4 (IPCC, Cambridge Univ. Press, 2014)


    Google Scholar
     

  • 4

    Hicke, J. A. et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob. Change Biol. 18, 7–34 (2012).

    Article 

    Google Scholar
     

  • 5

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 6

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Clim. Change 3, 292–297 (2013).

    Article 

    Google Scholar
     

  • 7

    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl Acad. Sci. USA 108, 1474–1478 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 8

    Matusick, G. et al. Sudden forest canopy collapse corresponding with extreme drought and heat in a mediterranean-type eucalypt forest in southwestern Australia. Eur. J. Forest Res. 132, 497–510 (2013).

    Article 

    Google Scholar
     

  • 9

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259, 660–684 (2010).

    Article 

    Google Scholar
     

  • 10

    Jiang, X. et al. 2013. Projected future changes in vegetation in western North America in the 21st century. J. Clim. 26, 3671–3687 (2013).

    Article 

    Google Scholar
     

  • 11

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 12

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).


    Google Scholar
     

  • 13

    Whitehead, D. & Jarvis, P. G. in Water Deficits and Plant Growth Vol. 6 (ed Kozlowski, T. T.) 49–152 (Academic Press, 1981).


    Google Scholar
     

  • 14

    Mencuccini, M. The ecological significance of long-distance water transport: Short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003).

    Article 

    Google Scholar
     

  • 15

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 16

    Lefsky, M. A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett. 37, L15401 (2010).

    Article 

    Google Scholar
     

  • 17

    Suarez, M. L. & Kitzberger, T. K. Recruitment patterns following a severe drought: Long-term compositional shifts in Patagonian forests. Can. J. Forest Res. 38, 3002–3010 (2008).

    Article 

    Google Scholar
     

  • 18

    Agee, J. K. Fire Ecology of Pacific Northwest Forests (Island Press, 1996).


    Google Scholar
     

  • 19

    Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st Century. Proc. Natl Acad. Sci. USA 32, 13165–13170 (2011).

    Article 

    Google Scholar
     

  • 20

    Cullingham, C. I. et al. Mountain pine beetle host-range expansion threatens the boreal forest. Mol. Ecol. 20, 2157–2171 (2011).

    Article 

    Google Scholar
     

  • 21

    Williams, A. P., Xu, C. & McDowell, N. G. Who’s the new sheriff in town regulating boreal forest growth? Environ. Res. Lett. 6, 041004 (2011).

    Article 

    Google Scholar
     

  • 22

    McDowell, N. G., Adams, H. D., Bailey, J. D., Hess, M. & Kolb, T. E. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes. Ecol. Appl. 16, 1164–1182 (2007).

    Article 

    Google Scholar
     

  • 23

    McDowell, N. G. et al. Interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

    Article 

    Google Scholar
     

  • 24

    McDowell, N. G., Adams, H. D., Bailey, J. D. & Kolb, T. E. The response of ponderosa pine growth efficiency and leaf area index to a forty-year stand density experiment. Can. J. Forest Res. 37, 343–355 (2007).

    Article 

    Google Scholar
     

  • 25

    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2014).

    Article 

    Google Scholar
     

  • 26

    Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: Using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).

    Article 

    Google Scholar
     

  • 27

    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 28

    Grady, K. C. et al. Genetic variation in productivity of foundation riparian species at the edge of their distribution: Implications for restoration and assisted migration in a warming climate. Glob. Change Biol. 17, 3724–3735 (2011).

    Article 

    Google Scholar
     

  • 29

    Lloret, F. et al. Extreme climatic events and vegetation: The role of stabilizing processes. Glob. Change Biol. 18, 797–805 (2012).

    Article 

    Google Scholar